The use of an artificial nucleotide for polymerase-based recognition of carcinogenic O6-alkylguanine DNA adducts
نویسندگان
چکیده
Enzymatic approaches for locating alkylation adducts at single-base resolution in DNA could enable new technologies for understanding carcinogenesis and supporting personalized chemotherapy. Artificial nucleotides that specifically pair with alkylated bases offer a possible strategy for recognition and amplification of adducted DNA, and adduct-templated incorporation of an artificial nucleotide has been demonstrated for a model DNA adduct O(6)-benzylguanine by a DNA polymerase. In this study, DNA adducts of biological relevance, O(6)-methylguanine (O(6)-MeG) and O(6)-carboxymethylguanine (O(6)-CMG), were characterized to be effective templates for the incorporation of benzimidazole-derived 2'-deoxynucleoside-5'-O-triphosphates ( BENZI: TP and BIM: TP) by an engineered KlenTaq DNA polymerase. The enzyme catalyzed specific incorporation of the artificial nucleotide BENZI: opposite adducts, with up to 150-fold higher catalytic efficiency for O(6)-MeG over guanine in the template. Furthermore, addition of artificial nucleotide BENZI: was required for full-length DNA synthesis during bypass of O(6)-CMG. Selective incorporation of the artificial nucleotide opposite an O(6)-alkylguanine DNA adduct was verified using a novel 2',3'-dideoxy derivative of BENZI: TP. The strategy was used to recognize adducts in the presence of excess unmodified DNA. The specific processing of BENZI: TP opposite biologically relevant O(6)-alkylguanine adducts is characterized herein as a basis for potential future DNA adduct sequencing technologies.
منابع مشابه
Mutagenicity associated with O6-methylguanine-DNA damage and mechanism of nucleotide flipping by AGT during repair.
Methylated guanine damage at O6 position (i.e. O6MG) is dangerous due to its mutagenic and carcinogenic character that often gives rise to G:C-A:T mutation. However, the reason for this mutagenicity is not known precisely and has been a matter of controversy. Further, although it is known that O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6MG paired with cytosine in DNA, the complete mech...
متن کاملEfficient repair of O6-ethylguanine, but not O4-ethylthymine or O2-ethylthymine, is dependent upon O6-alkylguanine-DNA alkyltransferase and nucleotide excision repair activities in human cells.
The formation and persistence of O6-ethylguanine, O4-ethylthymine, and O2-ethylthymine were quantitated in the genomic DNA of human lymphoblasts exposed to 1.0 mM N-ethyl-N-nitrosourea using immunoslot-blot. The three cell lines used included one which lacks O6-alkylguanine-DNA alkyltransferase, one deficient in nucleotide excision repair, and a third which is competent in both of these repair ...
متن کاملA highly sensitive and specific method for quantitation of O-alkylated DNA adducts and its application to the analysis of human tissue DNA.
Formation and accumulation of O6-alkylguanine and O4-alkylthymine in human tissues is possibly the most relevant marker for cancer risk. Because humans are chronically exposed to diverse kinds of chemicals and eventual DNA structural modifications are supposed to be a complex mixture of adducts at very low levels, it is essential to use an assay with extremely high sensitivity and specificity. ...
متن کاملO6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer?
Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 pos...
متن کاملInhibition of O6-alkylguanine DNA-alkyltransferase or poly(ADP-ribose) polymerase increases susceptibility of leukemic cells to apoptosis induced by temozolomide.
High levels of expression of the DNA repair enzyme O6-alkylguanine DNA-alkyltransferase (OGAT) (EC 2.1.1.63) account for tumor cell resistance to methylating agents. Previous studies suggested that methylating triazenes might have a potential role for the treatment of acute leukemias with low levels of OGAT. In the current study, we transduced the human OGAT cDNA in OGAT-deficient leukemia cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 44 شماره
صفحات -
تاریخ انتشار 2016